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Abstract

In this report we propose a new approach for the optimization of the wavenumber coverage in
the plane wave approximation of the gradient in the context of the Full Waveform Inversion.
This approach is based on the optimal positioning of sources and receivers on the surface. For
a fixed number of devices and a prescribed acquisition range, the optimality criterion in our case
is the regularity of the coverage inside the wavenumber cloud, the boundary of which is fixed by
the extremities of the range.

We propose to express the problem as an instance of stable Centroidal Voronoi Tessellation
and use a Newton-based method to minimize an energy function that takes as argument angles
instead of positions on the surface. In our implementation we used a BFGS method on a simple
instance for a homogeneous model of the subsurface. We noticed an improvement of the regularity
of the coverage, but so far no optimal pattern seems to emerge from the solutions.
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Chapter 1

Introduction

The Full Waveform Inversion is a geophysical imaging technique used to measure the physical
properties of the Earth. It works by comparing observed data obtained by probing the subsurface
using sources and receivers placed at the surface, and syntethic data obtained from a computer
program. Using an optimization framework the method tries to find the model that approximates
best the mechanical characteristics of the subsurface via the minimization of the difference between
the observed and the calculated data. Started during the 1980’s, the method has since been under
continuous development. Taking advantage of the positive evolution of the computing power of the
recent decades it is today widespread in industry and academia and continues to fuel the interest
of the research community.

The FWI uses a gradient descent method to solve the minimization part. Under the right
assumptions, the gradient of the cost function can be approximated by a sum of plane waves. Sirgue
and Pratt proposed a method for the optimization of the wavenumber content of the plane waves
using an optimal selection of temporal frequencies. It has also been shown that the positioning
of the sources and receivers at the surface has an impact on the wavenumber content of the
approximation. In this project we present a new approach to optimize this wavenumber coverage
through the optimal design of the positioning of sources and receivers on the surface.

In this report, we will introduce the FWI method and the problematic in chapter 2. Next, we
will study the wavenumber cloud and then present useful results from geometry, related to the
Centroidal Voronoi Tesselation, that will provide us with the necessary tools to model and solve
the problem. In chapter 4 we will talk about the implementation of the method and in chapter 5
we will present some results from a simple instance of the problem. We will conclude with a short
summary of what has been done and propose some perspectives.
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Chapter 2

Background

In this chapter we will present the problem in the frame of the Geophysical Imaging and its relation
to the Full Waveform Inversion method.

2.1 Full Waveform Inversion
Given an area on the Earth’s surface we want to get an estimate of the mechanical properties of
its subsurface.

Suppose we arrange on the surface Ns sources and Nr receivers. The sources perturb the ground
on the surface thus creating a wavefield propagating in the subsurface. The receivers register local
variations in their neighbourhoods and will pick up the propagating wavefield. By processing
the data registered by a single receiver we get a seismic trace recording the arrival times of the
waves at the location of the receiver, as in 2.1(a). The traces produced by the receivers registering
perturbations generated by a single source can be grouped into a seismogram 2.1(b) where they
are laterally stacked according to the offset, or distance to the source, of their receivers.

Let us denote by s = 1, . . . , Ns the indices of the sources and by r = 1, . . . , Nr those of the
receivers. The result of our configuration will be Ns seismograms, each associated to a source,
recording the arrival times of the waves at the receivers during a period of time t ∈ [0, T ], where
T represents the total recording time. Those seismograms represent the observed data dobs =
(dobs,s)s=1,...,Ns

obtained from the acquisition and are functions of time and space.

(a) A seismic trace (b) Seismogram

Figure 2.1: A seismic trace and a seismogram recording the arrival times (on the ordinate) of the
waves emitted by a source at respectively one receiver and several receivers. In the seismogram,
the abcissa corresponds to the distance of a receiver to the associated source, or offset, and thus is
a function of space and time.

The mechanical properties of the subsurface can be expressed as a function m(x) of space that
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Chapter 2 Optimal Design for Full Waveform Inversion

associates points x of the domain Ω ⊂ Rn (representing the space of the subsurface, n = 2 or 3
denotes the dimension of the model) to one or several values representing the parameters we want
to quantify, for instance the velocity of the medium, the density etc. Given a model m ∈ M of
the subsurface we can compute the wavefield us[m](x, t), generated by a perturbation made by the
source s, by first solving an acoustic-wave equation [11, p. 232]

A(m)us(x, t) = φs(x, t) , (2.1)

with φs(x, t) the source term of the PDE and A(m) =
(

1
m2

∂2

∂t2 −∆
)

is a general wave propa-
gation operator, modeling the propagation of mechanical waves within the subsurface.

We get the data returned by the receivers via a restriction operator R[u](x, t) =
∫
Ω
δ(y −

x)u(y, t)dy. We apply it on the resulting wavefield us[m] to retrieve the values at the locations of
the receivers as follows

ds[m](xr, t) = R (us[m]) (xr, t), for r = 1, . . . , N . (2.2)

Thus for parameters m we are then able by means of the forward equation (2.2) to compute
synthetic seismograms dcal(m) = (dcal,s(m))s=1,...,Ns

of the subsurface. What interests us is the
inverse problem where given observed data dobs we can deduce the model m∗ that would yield
dcal(m

∗) ' dobs, in other terms the argument that reduces best the difference between dobs and the
calculed data dcal(m). We can express this optimization problem via the following PDE-constrained
minimization problem [9, p. 66]

min
m∈M

f(m) =
1

2

Ns∑
s=1

Nr∑
r=1

T∫
0

|dcal,s(xr, t)− dobs,s(xr, t)|2dt

subject to: A(m)us(x, t) = φs(x, t), for s = 1, . . . , Ns ,

dcal,s(x, t) = R[us](x, t), for s = 1, . . . , Ns .

(2.3)

The Full Waveform Inversion is a seismic imaging technique that uses a gradient descent
method to solve 2.3 and match the calculated data through a computer model of 2.2 and observa-
tions. A fundamental component of the FWI is the gradient ∇f(m) of the misfit function which
gives the descent direction.

Figure 2.2: Illustration of the iterative process used in the FWI [9].

A way to compute ∇f(m) would be to use finite difference approximations that requires for
each source s solving at least as many wave propagation problems (2.1) as there are points in the
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Chapter 2 Optimal Design for Full Waveform Inversion

discretized grid of the domain Ω which is impractical from the computational point of view. In
comparison the adjoint state method [1] provides a way to compute the gradient which requires
to solve only two wave equations per source s, the incident equation (2.1) and an adjoint equation.

The gradient ∇f can be expressed as the sum over the sources of the zero-lag time correlation1

between the incident and adjoint wavefields us and λs

∇f(x) =
Ns∑
s=1

([
∂A(m)

∂m
us(x, t)

]
⋆ λs(x, t)

)
(0) . (2.4)

The adjoint wavefield λs is solution of the same equation 2.1 as us except that it is computed
backward in time and the source term is the backprojection of the residuals from the receivers
positions [2, p. 499]. For more details about the adjoint state method see appendix B.

2.2 Wavenumber content of the Gradient
To advance further let us simplify our model. We assume the following:

• The medium is homogeneous, with constant velocity c0 everywhere in the subsurface,

• The sources and receivers are far away from the diffraction or target point x.

Also we will focus on a unique source-receiver pair (s, r) so we will drop the indices. Assuming
these we can approximate the wavefields u and λ by plane waves. By neglecting amplitude and
considering only null phases we would have

u(x, t) = eik0(ps.x+t) ,

λ(x, t) = eik0(pr.x+t) ,
(2.5)

where k0 is given by

k0 =
2πf0
c0

. (2.6)

The vectors ps (resp. pr) are the unit-length directions of the rays connecting the sources
(resp. receivers) to x, for s = 1, . . . , Ns (resp. r = 1, . . . , Nr). Recall from (2.1) that A(m) is a
wave propagation operator, so ∂A(m)

∂m is a second order time partial derivative and neglecting any
constant we would have

∂A(m)

∂m
us(x, t) ≈ us(x, t) .

So we get

∇f(x) ≈ (u(x, t) ⋆ λ(x, t)) (0)

=
(
u(x,−t) ∗ λ(x, t)

)
(0)

≈ eik0ps·x · eik0pr·x .

We finally find that the gradient can be approximated by a plane wave of expression

∇f(x) ≈ eik0(ps+pr)·x . (2.7)

If we generalize this result to the pairs composed by all the sources and receivers we get an
approximation of the gradient as a sum of plane waves of wavenumbers

k(s, r) = (kx, kz) = k0(ps + pr) , (2.8)

where kx and kz denote respectively the horizontal and vertical wavenumber components in
the 2D approximation.

To improve the computation of the gradient we need to diversify the wavenumber content of
its approximation 2.7. To that end, there are two ways suggested by Sirgue and Pratt:

1crosscorelation or autocorrelation of zero time shift.
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Chapter 2 Optimal Design for Full Waveform Inversion

• We can use a wider range of frequencies, which means shooting each source several times,
each time with a different frequency f0 in (2.6).

• We can use a range of different source-receiver pairs that sample the same diffraction point
from different directions ps and pr.

The two methods can be used in concert [11, p. 234] and the authors proposed a strategy for
selecting temporal frequencies. What we propose is to explore the second strategy.

Figure 2.3: Each point in the cloud corresponds to a couple of sources and receivers. Here the
mean frequency f0 is equal to 5 Hz and the velocity c0 is equal to 2000 m/s. An ensemble of
Ns = 51 sources (resp. Nr = 51 receivers) have been regularly placed on the surface spanning a
range from start = 0 km to finish = 10 km. The diffraction point x = (5000,−3000) is situated
5 kms from start on the horizontal axis and 3 kms deep in the subsurface.

In figure 2.3 is an example of wavenumber content obtained via a specific positioning of sources
and receivers with a fixed frequency f0 for all sources. The objective is to find the optimal dis-
position of the sources and receivers on the surface that will yield a cloud of points that covers
densely and regularly an area as large as possible of the wavenumbers space.

Remark 1. In the remainder of the report we will take f0 = c0
2π to normalize k0 = 1. The

results, including the optimized positioning of the acquisition devices, will still be valid for
any frequency f0 because k0 is just a constant multiplier in (2.8).
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Chapter 3

Optimization of the wavenumber
space coverage

After having presented the problem in the previous chapter, we will discuss here the framework of
its resolution. At first we will study the problem further and isolate the key elements that define
it, then we will discuss results from geometry that will provide us with the necessary tools for the
method we propose and which we will present at the end.

3.1 Study of the domain of the wavenumber space coverage

In this section we will investigate the cloud of wavenumber points generated by an acquisition
layout (the positioning of the sources and receivers on the surface) and study its characteristics
before talking about the optimality criteria.

x

s r

pspr

θ
ϕsϕr

k

φs φr

n⃗

Figure 3.1: A source s and a receiver r
are positioned at the surface. We de-
note by ps and pr the unit-length di-
rections of the rays connecting respec-
tively the source and the receiver to the
diffraction point x in the middle along
with the angles ϕs and ϕr that the rays
make with the vertical axis. In the case
of a non-homogeneous medium the an-
gles φ’s do not correspond to the angles
ϕ’s.

To simplify the handling of wavenumbers we will ex-
press them in terms of angles and take advantage of
trigonometric identities. As shown in figure 3.1 the direc-
tion vectors ps and pr can be expressed using the angles
ϕs and ϕr they make with the vertical axis of direction
n⃗ =

[
0
−1

]
[6, Fig. 7] . We find the coordinates of those

vectors to be

ps =

[
sinϕs

− cosϕs

]
, pr =

[
sinϕr

− cosϕr

]
. (3.1)

From (2.8) and (3.1) we derive an angular formula-
tion of the wavenumber k(s, r) using the incident and
adjoint angles ϕs and ϕr as follows

k(s, r) = k0(ps + pr)

= k0

[
sinϕs + sinϕr

− (cosϕs + cosϕr)

]
= k0

[
2 cos(ϕs−ϕr

2 ) sin(ϕs+ϕr

2 )

−2 cos(ϕs−ϕr

2 ) cos(ϕs+ϕr

2 )

]
and get the identity

k = 2k0 cos(
θ

2
)

[
sin(ϕ)
− cos(ϕ)

]
, (3.2)

where θ = ϕs − ϕr is the illumination angle and ϕ =
ϕs+ϕr

2 is the average of the two angles.
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Chapter 3 Optimal Design for Full Waveform Inversion

Figure 3.2: Reference acquisition layout and its wavenumber cloud.

Let us consider the same acquisition layout as in figure
2.3: a regular discretization of the range [0, 10000] on the
surface. However this time we will have N = 21 sources and receivers instead of 51 for the sake
of visibility of the wavenumber points in the figures. In the remainder of the document this will
be regarded as the reference acquisition layout and the associated wavenumber cloud will be the
reference cloud, both shown in 3.2.

3.1.1 Size of the Area
We want to find the trajectory made by all the wavenumbers associated to a single source. To that
end we will fix the location of the source and let the location of the receiver vary. Let us say that
the source has a fixed angle ϕs, while the other angle ϕr varies between −ϕmax and ϕmax. Here
ϕmax denotes the largest angle the directional vectors ps or pr can make with the vertical and is
related to the farthest source or receiver from the diffraction point. For any ϕr we would have

k = k0

[
sinϕs + sinϕr

− cosϕs − cosϕr

]
= k0

[
sinϕs

− cosϕs

]
+

[
k0 sinϕr

−k0 cosϕr

]
= k0

[
sinϕs

− cosϕs

]
+

[
k0 cos(

π
2 − ϕr)

−k0 sin(π2 − ϕr)

]
,

so

k = k0

[
sinϕs

− cosϕs

]
+

[
k0 cos(ϕr − π

2 )
k0 sin(ϕr − π

2 )

]
. (3.3)

Consequently the wavenumbers associated with s form a circular arc of radius r = k0, center
c = k0

(
sinϕs,− cosϕs

)
and length l = 2ϕmaxk0. The same goes for a receiver r, with its angle

replacing ϕs. In the figure 3.3 we see the circular arcs hidden in a wavenumbers cloud, along with
their centers.

The domain W of all potential wavenumbers, considering a range on the surface that produces
a maximum angle ϕmax, can be defined as

W =

ϕmax⋃
ϕs=−ϕmax

{
k0

[
sinϕs

− cosϕs

]
+

[
k0 cos(ϕr − π

2 )
k0 sin(ϕr − π

2 )

]
: −ϕmax ≤ ϕr ≤ ϕmax

}
=

ϕmax⋃
ϕs=−ϕmax

Arcϕs
,

(3.4)
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Chapter 3 Optimal Design for Full Waveform Inversion

Figure 3.3: The circular arcs in the wavenumbers cloud of figure 2.3 associated to some of the
sources in the acquisition layout. Notice how the centers of the circular arcs also form a circular
arc above the wavenumber cloud.

where Arcϕs
denotes the circular arc of radius r = k0 and center c = (k0 sinϕs,−k0 cosϕs),

generated by angles b = ϕr − π
2 spanning [−ϕmax − π

2 , ϕmax − π
2 ].

The domain W has an enveloppe constituted by the union of the side circular arcs Arc−ϕmax

and Arcϕmax with the bottom arc of equation

k(s, s) = 2k0

[
sinϕs

− cosϕs

]
for ϕs ∈ [−ϕmax, ϕmax],

which is the circular arc of center the origin, radius r = 2k0 and angle ϕs. The area covered
by the wavenumber domain is limited by the maximum angle ϕmax and thus its extension is
conditionned by the farthest emplacement on the surface from the diffraction point: the largest
the range on the surface covered by the acquisition is, the largest the area of the wavenumber
domain will be.

Figure 3.4: Enveloppe of the domain of 3.2 (in
blue) and the maximum theoretical expansion
possible of the domain (in red) if ϕmax = π

2 .

For a fixed acquisition range on the surface
it is possible to enlarge the maximum angle
ϕmax by considering the placement of sources
and receivers inside wells at both ends of the
range in the aim of adding degrees to ϕmax.
Figure 3.4 shows the enveloppe of the refer-
ence wavenumber cloud and compares it with
the theoretical maxed out domain if we had
ϕmax = π

2 , which corresponds to an impossible
infinite acquisition range on the surface.

3.1.2 Number of points
Each wavenumber is associated to a pair of
source/receiver so for an acquisition layout of
Ns sources and Nr receivers we should have Nw = Ns × Nr wavenumbers. So the density of the
wavenumber cloud is linked to the density of the coverage of the acquisition range on the surface.

Notice in (2.8) and (3.2) that the function k(s, r) is symmetric which implies that if a source/receiver
pair (s, r) swapped their positions with each other they would produce the same wavenumber, i.e.

k(s, r) = k(r, s), ∀(s, r).

In the reference layout each source shares its emplacement with a receiver and the symmetry
makes it that each wavenumber in the reference cloud is duplicated. For this reason, from the
geometric point of view, it is better to avoid symmetric source/receiver pairs. Remark that in

8



Chapter 3 Optimal Design for Full Waveform Inversion

Figure 3.5: The sources and receivers of the reference layout have been shifted on opposite direc-
tions, both with a distance of 119 m.

figure 3.6 we acquired double the number of wavenumbers1 with the same number of sources and
receivers compared to 3.2, by using a staggered acquisition where the receivers are in the middle
of the sources. By this we avoid any symmetric pair.

3.1.3 Regularity
As we have seen so far, (1) the size of the wavenumber domain is constrained by the range of the
acquisition on the surface and (2) the number of points inside the domain is equal to Ns × Nr,
provided there are no duplicates. We conclude that the larger the range and the more acquisition
devices the better it is. The last optimality criterion to consider is the regularity of the wavenumber
space coverage.

We find that the distance between two wavenumbers k = k(s, r) and k̂ = k(ŝ, r̂) of angular
increments as = ϕs − ϕŝ and ar = ϕr − ϕr̂ is given by the formula

‖k − k̂‖ = 2k0

√
sin2(

|as|
2

) + sin2(
|ar|
2

) + 2 sin(
|as|
2

) sin(
|ar|
2

) cos

[
ϕs − ϕr +

1

2
(as − ar)

]
. (3.5)

The wavenumbers that share the same source or receiver will form a circular arc as demonstrated
in (3.3) so the distance between k and k̂ = k(s+ 1, r) (resp. k̂ = k(s, r + 1)) is equal to

‖k − k̂‖ = 2k0 sin
a

2
,

where a = |as| (resp. a = |ar|). We deduce than a regular discretization of the space of incident
and adjoint angles would yield a regular positioning of the wavenumbers along the circular arcs.

The formulae that connect the angles ϕs (resp. ϕr) and vectors ps =
x−s

∥x−s∥ (resp. pr = x−r
∥x−r∥ )

are

ϕs = arccos(ps · n⃗)
ϕr = arccos(pr · n⃗).

(3.6)

1distinct
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Chapter 3 Optimal Design for Full Waveform Inversion

Figure 3.6: Acquisition layout and wavenumber clouds associated to a regular distribution of the
angles ϕs and ϕr.

Because of the nonlinearity of the operations, a layout of the sources and receivers with a reg-
ular interval distance on the surface does not translate into a regular discretization in the space
of incident and adjacent angles. Figure 3.6 shows the acquisition layout that would yield regular
discretizations (ϕs)s=1,...,N and (ϕr)r=1,...,N of [−ϕmax, ϕmax] along with the resulting wavenumber
cloud. If on the top of the cloud the distances between points appear regular it is not the case for
those on the bottom. This is due to the fact that the distance in (3.5) is not purely a function of
the increments as and ar but depends also on the difference ϕs − ϕr: the more ϕs and ϕr grow
apart the more distant the wavenumber k will be from its neighbours. This is why in 3.6 the
wavenumbers in the bottom, which correspond to close vectors ps and pr, seem to converge to an
accumulation point.

Should the range boundaries and the numbers Ns and Nr be imposed parameters we are left
with the positioning of the sources and receivers (equivalent to the choice of incident and adjoint
angles) within the prescribed range to play on the regularity of the coverage. We have seen that
simply choosing a regular spacing of the angles is not enough to ensure the regularity of the spacing
between adjacent wavenumbers. To solve our problem we are to frame it into an optimization
problem and solve it using rigourous and proven techniques of mathematical programming.

The regularity aspect can be seen as an instance of Centroidal Voronoi Tessellation (CVT)
: we seek a regular distribution of the wavenumbers inside the domain W, with the additional
constraint of interdependency through the sources and receivers. In the next section we will talk
about the CVT and present some relevant results from [7].

3.2 Centroidal Voronoi Tessellation
Let Ω ⊂ RN be a bounded domain and let ‖.‖ denote the Euclidean norm on RN . Let X =
(xi)i=1,...,n ⊂ Ω be a set of n distinct points that we will call seeds. The Voronoi cell of a seed xi

is defined as the set of points in Ω to which xi is the closest of all the seeds,

Ωi = {x ∈ Ω | ‖x− xi‖ ⩽ ‖x− xj‖ , ∀j 6= i} . (3.7)

10



Chapter 3 Optimal Design for Full Waveform Inversion

The Voronoi cells {Ωi}i=1,...,n form a Voronoi tessellation2 of Ω. A tessellation of Ω is a
collection of subsets (Vi)i=1,...,n of Ω that verify (a) Vi ∩ Vj = ∅ for i 6= j and (b)

⋃n
i=1 V i = Ω.

Given a density function ρ(x) defined on Ω, the mass centroid of a subset S ⊂ Ω is given by

c(S) =

∫
S
ρ(x)xdσ∫

S
ρ(x)dσ

. (3.8)

Here we have all the elements to construct a CVT.

Definition 1 ([7, Definition 1]). The Voronoi tessellation {Ωi}i=1,...,n is a Centroidal
Voronoi Tessellation if for all i = 1, . . . , n, we have xi = ci; that is, each seed coincides
with the centroid of its Voronoi cell.

Arbitrary seeds in Ω do not correspond to the centroids of their Voronoi cells so a CVT is a
special case of Voronoi tessellation. Due to its specificity CVT has a lot of applications in many
fields, see [3, section 2] for some examples.

Given a domain Ω, the CVT problem consists in finding the seeds {xi} ⊂ Ω that would generate
a CVT of the domain. The solution is in general not unique [3, p. 639]. Figure 3.7 illustrates this
with two CVT’s of the same domain. The CVT can be seen from two perspectives [7, p. 5]: the
Geometric characterization and the Variational one.

(a) A Voronoi tessellation (b) A Centroidal Voronoi Tessella-
tion

(c) A different CVT

Figure 3.7: Examples of a Voronoi Tessellation (left) and a CVT of an hectagon (center) with a
constant density function ρ. Another CVT of the hectagon is also possible as illustrated in the
example on the right.

3.2.1 Geometric characterization
A CVT can be understood from definition 1 to be a solution of the system of nonlinear equations
of the form

xi = c(Ωi) , i = 1, . . . , n , (3.9)

which relies on the concept of centroid. The classic method to produce a CVT is Lloyd’s
algorithm, an iterative method which starting from an initial Voronoi tessellation of the domain
iteratively updates the seeds with the centroids of their Voronoi cells. Lloyd’s method is named
after Stuart P. Lloyd [8] and algorithm 1 gives an outline of it.

2also Voronoi diagram

11



Chapter 3 Optimal Design for Full Waveform Inversion

Algorithm 1: Lloyd’s method [3, p. 657]
Input: A domain Ω, integer n > 0, density function ρ defined on Ω.
Output: A CVT of Ω (with n seeds).

1 Initialize the seeds {xi}i=1,...,n and construct the associated Voronoi Tessellation
{Ωi}i=1,...,n;

2 while Stopping criteria not met do
3 Compute the centroids ci of Ωi, i = 1, · · · , n;
4 Update the seeds with the centroids: xi ← ci, i = 1, . . . , n;
5 Construct the Voronoi Tessellation {Ωi}i=1,...,n of Ω;
6 end
7 return {Ωi}i=1,...,n

The map T : X −→ T (X) = {c(Ωi)}i=1,...,n that associates the seeds X = {xi}i=1,...,n to the
centroids of their Voronoi cells is referred to as the Lloyd map [3, p. 658]. We easily notice that
the seeds X of a CVT are a fixed point of T which makes Lloyd’s method a fixed point iteration

X(n+1) = T (X(n)). (3.10)

Contrary to what its predominent use would suggest, Lloyd’s method has a linear convergence
and is considered to be of poor efficiency as we will clearly see later. With the growing interest in
the CVT and the research done on it, new and better methods have been explored, among them
Newton-based optimization methods introduced by Liu et al..

3.2.2 Variational characterization
Finding a CVT can be redefined in the frame of an optimization problem. We can associate an
energy function to the CVT via the result:

Theorem 1 ( [3, Propositions 3.1 and 3.2] ). Given Ω ⊂ RN , a positive integer n and a
density function ρ(.) defined on Ω, let X = {xi}i=1,...,n denote any set of n points belonging
to Ω. Let

F (X) =

N∑
i=1

∫
y∈Ωi

ρ(y)‖y − xi‖2dy . (3.11)

A necessary condition for F to be minimized is for the seeds in X to generate a CVT of
Ω.

Every minimizer of F is a CVT but the reverse is not true: it’s not every CVT that minimizes
F . However we can still characterizes a CVT by the energy function F . If we denote by M(X)
the diagonal matrix of elements {mi}i=1,...,n, the masses of the Voronoi cells {Ωi}i=1,...,n,

mi =

∫
Ωi

ρ(y)dy, i = 1, · · · , n , (3.12)

then the gradient of F is given by the formula [3, Proposition 6.2]

∇F (X) = 2M (X) (X − T (X)) . (3.13)

Since CVTs are fixed points of T they are also stationary points of the gradient ∇F and from
here we obtain a second, more in depth, definition of a what constitutes a CVT.

Definition 2. [7, Definition 2] A Centroidal Voronoi Tessellation of a closed domain Ω
with n seed points X = {xi}i=1,...,n is the Voronoi tessellation given by the seeds X0 which
is a critical point of the CVT energy function F (X). Furthermore, a CVT is called a stable

12



Chapter 3 Optimal Design for Full Waveform Inversion

CVT if X0 is a local minimizer of F (X), and it is called an optimal CVT if X0 is a global
minimizer of F (X).

In short optimal, CVT’s are the results of optimization programs of the form

min
X=(xi)i=1,...,n⊂Ω

F (X) . (3.14)

Liu et al. argue that the function F has been for a long time wrongly believed to be non-smooth
(C0 and not even C1) due to its complicated piecewise nature and this impeded impactful progress
in finding more computationaly efficient alternatives to Lloyd’s method and deterred any research
in the direction of robust descent methods. The authors denoted the space of sets of seeds of n
distinct elements by

ΓC =
{
X = {xi}i=1,...,n ⊂ Ω | xi 6= xj for i 6= j

}
,

and provided conditions on the smoothness of the energy function F in the 2D case3 via the
theorem:

Theorem 2. The 2D CVT function is C2 in ΓC if Ω is convex and the density function ρ(X)
is C2.

Figure 3.8: Illustration of remark 2: with enough seed points no ridge of the Voronoi cells is parallel
to the boundary of the domain.

Remark 2. The authors explained that the C2 smoothness is lost when a continuous part of ∂Ω
is contained inside a ridge of a Voronoi cell. In this case F is C1. In practice, with a sufficient
number of seeds no ridge of Voronoi cell is parallel to the boundary ∂Ω in most configurations.
Thus during the optimization procedure the energy function is C2 in the neighbourhood of
the visited iterations X(n).

With those elements in mind we can apply a gradient descent of the form

X(n+1) = X(n) − αnB(X(n))∇F (X(n)) , (3.15)

where αn is the step size to carefully choose at each iteration and B(X(n)) is a positive definite
matrix.

In light of this new result and formula (3.13) to compute the gradient, Liu et al. propose to
take advantage of the C2 smoothness of F and use a Newton method of quadratic convergence for
the CVT in the 2D and 3D case so (3.15) would be

3They also found the same result for the 3D case
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X(n+1) = X(n) −H(X(n))−1∇F (X(n)) , (3.16)

with αn = 1 and B = H−1, where H denotes the Hessian of F .
Although a method exists for computing the second order partial derivatives of the CVT energy

function [7, p. 11], constructing the Hessian matrix and inversing it at every iteration of the
Newton method would be costly for large-scale instances of the CVT. So the authors propose to
use quasi-Newton methods that approximates the Hessian, like BFGS. To circumvent the large
memory space requirement of the BFGS to store the dense inverse Hessian matrix they settle for
the L-BFGS (limited memory BFGS) variant as an alternative.

To take advantage of the availabilty of a formula for the Hessian, they also propose to test the
P-L-BFGS method, alongside the L-BFGS, which updates the Hessian H̃0 in L-BFGS with the
current exact Hessian every fixed numer of iterations.

From 3.10 and 3.15 we conclude that Lloyd’s method can also be expressed as a gradient descent
method with step size αn = 1

2 and B(X(n)) = M(X(n))−1. We see here the problem with this
method: it is of order 1 thus has a linear convergence; coupled with the fixed step size αn it has
no mechanisms to avoid saddle points. This unveils the overall inefficiency of the Lloyd’s method
and why more robust and efficient methods are needed.

After running tests on simple geometric examples (polygons and polyhedrons), both with con-
stant and varying density ρ [7, section 5], and to instances of mesh surface [7, section 6] using the
Newton-based optimization methods and the Lloyd’s method they arrived at the conclusion that
the L-BFGS and P-L-BFGS methods are significantly faster than Lloyd’s method.

Now that we layed down the basics of the CVT, let us apply it and express our coverage problem
as a minimization problem.

3.3 Regularity of the wavenumber coverage as an instance
of CVT

Let us go back to our wavenumbers. For ϕmax fixed, corresponding to a prescribed range of
acquisition, if we consider the associated W as the domain Ω in R2 with constant density ρ(x) = 1
then the function F applied to the wavenumber points expresses the regularity of the coverage of
W. So we aim at finding the positioning of sources and receivers on the surface that would yield
the points in the wavenumber space which will produce a tessellation of the domain W as close to
a stable CVT as the interdependency will allow.

Lloyd’s method cannot be applied to our problem: the seeds are interdependant via their
parametrization by the sources and receivers, so updating one wavenumber point will inevitably
impact other poinst as illustrated by figure 3.9. Instead, the main idea is to use the optimization
formulation (3.14) and inject the source-receiver parametrization.

As in formula (3.2) we will define a function that links a pair source-receiver (s, r) to a wavenum-
ber via their respective angles ϕs and ϕr,

k : [−ϕmax, ϕmax]
2 −→ R2

(ϕs, ϕr) 7−→ k(s, r)
.

We also define a function that gives the set of wavenumbers generated by incident and adjoint
angles S = (ϕs)s=1,...,Ns

and R = (ϕr)r=1,...,Nr

K : [−ϕmax, ϕmax]
Ns+Nr −→

(
R2

)Ns×Nr

(S,R) 7−→ (k(si, rj))j=1,··· ,n
i=1,··· ,m

. (3.17)

The composition of K and the energy function F yields a new energy function Fϕ that assesses
the fitness of an acquisition layouts by the criterion of regularity of the distribution of the points
in the produced wavenumber cloud,

Fϕ = F ◦K : [−ϕmax, ϕmax]
Ns+Nr

K−→
(
R2

)Ns×Nr F−→ R+/, , (3.18)

and from here we obtain a minimization formulation of the regularity problem described in
subsection 3.1.3:
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Chapter 3 Optimal Design for Full Waveform Inversion

(a) A Voronoi tesselation of W.

(b) Result of applying an operation of Lloyd’s method.

Figure 3.9: An attempt on applying the update of a seed by the centroid of its Voronoi cell for
the problem of regularity of the wavenumber cloud; the result is that the positions of the source
and receiver associated to the moved seed changed and this impacted the other seeds depending
on those same source and receiver. Thus Lloyd’s method is impractical for our problem.

min
(S,R)

Fϕ(S,R). (3.19)

Because of the non-convexity of W in figure 3.4 the cost function is C1 but taking into account
remark 2 we can still apply Newton-based methods. Using the chain rule we obtain the formula
of the gradient

∇Fϕ(x) = JK(x)T · ∇F (K(x)) . (3.20)

where JK(x) ∈ R2(n×m)×(m+n) is the Jacobian of K and ∇F is the gradient defined in 3.13.
At the end we will use a gradient-based method to solve the optimization problem.

Remark 3. Because the seeds need to be distinct points in the definition (3.7) of a Voronoi cell
to generate a correct Voronoi tessellation, we are to ensure that no wavenumber is duplicated
in the wavenumber space. To that end we will avoid symmetric source-receiver pairs in the
initialization of (3.19) as discussed in 3.1.2.

In the next chapters we will apply our approach and present some results.
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Chapter 4

Implementation

The implementation of the methods seen in this project has been done in Python, using numpy [5]
and scipy [13] for numerical computing along some specific librairies and scripts for other aspects
of the problem. The project is accessible at this repository.

4.1 Wavenumbers
A function wavenumbers_angles has been written that takes as input a set of incident and adjoint
angles and generates the points of the wavenumber cloud using formula (3.2). To find the acquisi-
tion layout on the surface that would produce the angles a function layout2angles converts the
positions (x, z) of a source or receiver to an angle ϕ via the formula

ϕ = arccos

 zx − z√
(xx − x)

2
+ (yx − y)

2

 ,

where (xx, zx) are the coordinates of the diffraction point x. The function is mainly used for
convert initial acquisition layouts into angles to feed them to the optimization program. The
function angles2layout does the opposite via the formulae

x = xx + zx tan (ϕ) and z = 0 ,

and is used to retrieve the positions of the sources and receivers on the surface corresponding
to the optimal angles at the end of the execution of the program.

The wavenumber cloud of an acquisition layout is obtained by running wavenumbers_angles
with the angles returned by layout2angles as input. Plot functions produces the wavenumber
clouds and acquisition layout plots like the ones seen in figures of section 3.1.

4.2 Voronoi tessellation
The function scipy.spatial.Voronoi takes as input an array of points and generates Voronoi
tessellations of the space RN using the points as seeds. Because the function does not consider
a domain it only provides vertices of the Voronoi regions that are intersections of ridges of the
regions, the rest are considered stretching to infinity 4.1(a).

To complete the Voronoi diagram a Python script has been used [12], that reconstructs the
infinite Voronoi regions outputted by scipy.spatial.Voronoi in 2D into a finite diagram 4.1(b)
but not inside a desired domain as it constructs the missing vertices by intersecting the ridges
stretching to infinity with a circle the radius of which is a parameter to fix.

To get the Voronoi tessellation of a domain we define or approximate the latter by a polygon and
we use the intersection method made available by Shapely [4], a Python library for manipulating
planar geometric object; we create polygonal Voronoi regions using the previous script with a
sufficiently large radius in the option and we intersect them with the domain 4.1(c). Concerning
the domainW in the wavenumber space, the circular arcs that compose it have been approximated
by a large number of line segments.
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Chapter 4 Optimal Design for Full Waveform Inversion

(a) Voronoi diagram produced by
Scipy

(b) Using Virtanen’s script. (c) Intersection with the domain via
Shapely.

Figure 4.1: Creation process of a Voronoi tessellation of a domain.

Lloyd’s method has been implemented for the CVT and has been used to check the correct
implementation of the variational approach, as discussed in section 4.4.

4.3 Integration over polygons
To compute the area of a Voronoi cell as in (3.12), we use the divergence theorem to get

mi =

∫
Ωi

dx dy =
1

2

∫
Ωi

∇ ·
[
x
y

]
dx dy =

1

2

∫
∂Ωi

[
x
y

]
· n⃗ ds . (4.1)

Considering the cell to be a polygon we can parametrize the line segments C made by two
adjacent vertices p1 and p2 by C(t) : t 7−→ tp1 + (1− t) p2 for t ∈ [0, 1]. Summing over the line
segments C forming the polygon we get the area via the line integrals

mi =
1

2

∑
C

1∫
0

[(1− t) p1 + tp2] · n⃗ ‖C‖ dt . (4.2)

We apply the same technique and the same parametrization to get a way to numerically evaluate
T (X) and F (X); we find for the centroid in (3.8)

ci =
1

mi

∫
Ωi

x dx =
1

mi



∫
Ωi

x dx dy

∫
Ωi

y dx dy

 =
1

2mi



∫
Ωi

∇ ·
[
x2

0

]
dx dy

∫
Ωi

∇ ·
[
0
y2

]
dx dy

 =
1

2mi



∫
∂Ωi

[
x2

0

]
· n⃗ ds

∫
∂Ωi

[
0
y2

]
· n⃗ ds

 . (4.3)

For the energy function (3.11), denoting xi the seed of the Voronoi cell Ωi, we would have

∫
Ωi

‖x− xi‖2 dx =

∫
Ωi

‖x‖2 + 2x · xi + ‖xi‖2 dx =

∫
∂Ωi

(
1

3

[
x3

y3

]
+

[
xix

2

yiy
2

]
+
‖xi‖
2

[
x
y

])
· n⃗ ds. (4.4)

The function scipy.integrate.quad has been used to compute the line integrals.
To test the correct implementation of formulae (4.1) and (4.3) we generate a Voronoi tessellation

of some polygonal domain using random seeds and we compute the masses and centroids of the
Voronoi cells using the line integrals and compare the result with the methods area and centroid
of Shapely. Table 4.1 shows the relative error for different domains.
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Shapes
Triangle Square Hectagon L-shaped W

number of seeds 56 100 95 118 99
ci 3× 10−15 3.3× 10−15 1.96× 10−15 5.23× 10−15 2.37× 10−14

mi 5.36× 10−15 2.99× 10−15 3.92× 10−15 5.67× 10−15 2.62× 10−14

Table 4.1: Relative errors

4.4 Optimization
Functions F and K have been implemented along with the gradients ∇F and ∇ (Fϕ). The gradient
is a fundamental component of a gradient descent method and it is useful to test its correct
implementation. For that we will compare the implementations with approximations given by
finite difference methods, using both a first order right-sided scheme

∂f

∂xi
(x) ≈ f(x + h · ei)− f(x)

h
, i = 1, . . . , n , (4.5)

and a second-order centered scheme

∂f

∂xi
(x) ≈ f(x + h · ei)− f(x− h · ei)

2h
, i = 1, . . . , n , (4.6)

for f a continuous scalar-valued function of several variables on RN and h a small positive
increment with ei denoting the ith standard unit vector of RN . The CVT energy function F
and its gradient will be evaluated at a set X composed of randomly generated points inside some
polygon; the polygon will play the role of the domain and the points will be the seeds which will
generate its Voronoi tessellation. The cost function Fϕ will be valued at randomly generated sets
of incident and adjoint angles spanning [−ϕmax, ϕmax]. For the comparison we will compute the
relative error of the finite difference methods at some point x

ϵ =
‖∇f(x)− ∇̃f‖
‖∇f(x)‖

,

where ∇̃f is the approximated gradient obtained through (4.5) or (4.6).
Figure 4.2(a) shows the relative errors obtained using different values of the increment h with

F evaluated at a tessellation of W and 4.2(b) shows the relative error for Fϕ at random angles.
We confirm that the right-sided scheme is of first order and the centered scheme is of second
order which indicates that the implemented gradients are correctly derived from their respective
functions.

Being confident about the cost functions and their gradients we can use an optimization method
to solve the corresponding problems. For that we will use scipy.optimize.minimize, a function
for minimizing scalar objective functions of one or mor evariables, proposing several solvers among
them BFGS for unconstrained problems and L-BFGS-B for bounded problems; the former will be
used for the CVT as there is no clear way to identify the bounds characterizing the seeds and both
solvers for the wavenumber coverage problem.

We test the BFGS solver of the scipy library on instances of the CVT problem against Lloyd’s
method. We take some different geometric shapes of domains and generate random seeds inside it
as an initialization and apply both Lloyd’s and BFGS methods to find a CVT. We then compare
the results (values of F and the 2-norm of its gradient) and the performance (total execution time
and number of iterations) of each.

Results of some of the tests have been compiled in table 4.2. The stopping criteria for Lloyd’s
method have been chosen to be the residuals between the seeds and the centroids of their respective
Voronoi cells not exceeding a threshold, namely ‖X − T (X)‖ < 10−6, or the number of iterations
going beyond the limit 1000; thus the method either yields a CVT or stops short of it because it
takes too much time to do so. So far in the examples Lloyd’s method always terminate with a
CVT. We notice that the two methods provide the same values of F while the difference resides in
the magnitude of ∇F , with BFGS always yielding a gradient of order 10−5 because of its stopping
criterion which sets a threshold for the gradient. This indicates that the two methods are both
successful and the optimization approch is correct and well implemented.
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(a) Test ∇F on W. (b) Test ∇Fϕ on a random layout.

Figure 4.2: Relative errors of the gradients with first and second order finite difference schemes.
The function F has been evaluated on W at 24 random points used as seeds and Fϕ has been
evaluated at an acquisition layout composed of 7 sources and 7 receivers of random angles ϕs and
ϕr.

Shapes
Triangle Square Hectagon L-shaped W

number of seeds 49 100 94 138 105
Initialization

Value of F 2.15× 10−3 1.03 3.32 0.06 12.22
Norm of ∇F 0.22× 10−3 0.59 1.60 0.06 5.06

Lloyd
Value of F 8.49× 10−4 0.42 1.13 0.03 3.53

Norm of ∇F 5.27× 10−6 1.35× 10−3 1.98× 10−4 8.5× 10−5 3.77× 10−3

Number of iterations 86 163 555 308 312
Execution time 1.24 s 5.21 s 14.43 s 11.56 s 12.06 s

BFGS
Value of F 8.43× 10−4 0.42 1.13 0.03 3.53

Norm of ∇F 3.33× 10−5 3.97× 10−5 5.35× 10−5 5.49× 10−5 4.46× 10−5

Number of iterations 146 153 164 302 133
Number of F evaluations 148 154 165 304 139

Execution time 99 s 163 s 170 s 466 s 233 s

Table 4.2: Comparison of the results between the Lloyd’s and BFGS methods.

19



Chapter 5

Results

After the discussion about the implementation and the various tests conducted we will present in
this chapter the results obtained when applying the method discussed in section 3.3. The instance
of the problem consists of 10 sources and 10 receivers to be positionned on an acquisition range of
[0, 10000], with the diffraction point situated at x = (5000,−3000) in the subsurface. As discussed
in remark 1 we will take f0 = 2π

c0
and the result of the optimization will still be relevant for other

values of the frequency.
In the following we will present a typical solution of the minimization problem, a comparison

of this solution with the ideal stable CVT of W and then a short study on the impact of the
initialization on the quality of the solution.

5.1 A first optimization of the layout
Figure 5.1 presents a layout and the obtained wavenumber cloud corresponding to optimized angles
ϕs and ϕr returned by BFGS, which was initialized with the shifted regular acquisition layout
presented in figure 3.5. The value of the energy function reached the optimal value of 3.9 × 10−3

from an initial value of 5.4× 10−3, after 55 iterations and 61 function evaluations.
The resulting wavenumber cloud looks relatively satisfying in terms of regularity compared to

clouds seen so far. Notice the particular configuration of the acquisition layout on the surface:
here (1) each source faces a receiver, and vice-versa, with regards to the centeral vertical axis of
the acquisition range, (2) there are noticeable blank spaces at both extremities, separarting the
two extremal acquisition devices from the rest of the layout and (3) the positioning in the middle
part of the range is in pairs of devices of similar nature, two sources or two receivers, whereas
it alternates between a source and a receiver in the rest of the range. Such a configuration is
counter-intuitive as in general a regular positioning of the sources and receivers would come to
mind when tasked with assembling an acquisition layout.

5.2 CVT of W
To get a lower bound of the energy function Fϕ we consider a stable CVT of W that we obtain
by minimizing F with n = Ns ×Nr = 100 seed points. Figure 5.2 shows a stable CVT alongside
the Voronoi tessellation we get from the points of the wavenumber cloud of figure 5.1. The stable
CVT represents an ideal regular coverage of the wavenumber cloud that we would get had not for
the interdependency constraints of the seeds.

Stable CVT Optimal layout
Value of F 2.76× 10−3 3.9× 10−3

Table 5.1: Comparison of the values of the energy
function F at the stable CVT of W and for the
optimized layout.

We see that the Voronoi tessellation of W
is close to a CVT, the difference results from
the fact tha the interdependency constraints
forbid a seed to correspond to the centroid of
its Voronoi cell because otherwise it would in-
crease some terms ‖xi−ci‖2 in (3.11) by moving
other seeds; the result 5.2(b) corresponds to a
balance. Values of the function F for the CVT
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Figure 5.1: The optimal positioning of 10 sources and 10 receivers inside a range [0, 10000] on the
surface, resulting from the optimal angles returned by BFGS using the configuration of figure 3.5
as initialization.

and the optimized layout are presented in table 5.1. We can see that the minimizer of Fϕ is still
far from the ideal minimizer of F .

5.3 Different initializations
To investigate the impact of the choice of initialization we have considered four initial configura-
tions:

1. A staggered1 regular positioning of the sources and receivers, the same as in section 5.1.

2. Random positions of the Ns sources and Nr receivers on the surface generated via a contin-
uous random uniform distribution on [0, 10000].

3. An acquisition layout corresponding to angles ϕs and ϕr forming a regular discretization of
[−ϕmax, ϕmax] as in figure 3.6, but shifted as to avoid duplicate wavenumebrs.

4. An acquisition layout corresponding to Ns + Nr uniformely generated angles ϕs and ϕr on
[−ϕmax, ϕmax].

We will compare the four initial configurations on the basis of the optimal value of Fϕ returned
by the optimization program. We will also compare their efficiencies by looking at the initial values
of Fϕ and the number of iterations.

Results for deterministic configurations 1 and 3 are compiled in table 5.2. The optimized layout
obtained by using regular initial incident and adjoint angles is similar to the result in figure 5.1,
as the optimal values of Fϕ in the table suggests, the difference being that it takes more iterations
(64) to achieve this value for regular angles than initializing with regular positions (which takes
55 iterations) despite the fact that we start with a more promising initial value in the former (
4.5× 10−3 ) than the latter ( 5.4× 10−3 ).

For configurations 3 and 4 subject to randomness we considered 10 runs of the program and
the results are compiled in table 5.3. Overall the runs with random initializations yielded better

1No source and receiver share the same location.
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(a) A stable CVT of W obtained via BFGS.

(b) The Voronoi tessellation of W from the previous optimal wavenumbers.

Figure 5.2: Comparison of a stable CVT and the Voronoi tessellation generated by the points of
the optimized wavenumber cloud.

- 1 - - 3 -
Regular positions Regular angles

Initial value of Fϕ 5.4× 10−3 4.5× 10−3

Optimal value of Fϕ 3.9× 10−3 3.9× 10−3

Number of iterations 55 64
Number of evaluations of Fϕ 61 81

Table 5.2: Comparison of the results of different determinitic initializations for the optimization
program.

results than those of table 5.2, but at the cost of a higher number of iterations due to the fact that
the optimization program starts at worst initial values (on average 1.43 × 10−3 for the random
positions and 1.35× 10−3 for the random angles).

The best result found so far came from a random initialization of the angles and achieved a
final value of 3.31×10−3, from an initial value of 8.35×10−3, after 75 iterations and 81 evaluations
of Fϕ. Figure 5.3 shows the optimized acquisition layout and the wavenumber cloud obtained from
this configuration. Compared to 5.1, we gained a more regular spacing of the points in the bottom
region of the wavenumber cloud which translates into a smaller value of Fϕ. However the symmetry
is lost and at first glance no particular pattern seems to emerge from the optimized layout, if we
exclude the positionning in a row of 5 sources (resp. receivers) on the right side (resp. the left
side) of the acquisition range.

We conclude from this comparison that the proposed optimization method is sensitive to the
initialization and an initial configuration subject to randomness may yield better results than a
regular one of smaller initial energy. Also the best result we achieved out of all the execution of
the program has an assymetric wavenumber cloud and a counterintuitive acquisition layout on the
surface.
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- 2 - - 4 -
Random positions Random angles

Initial value of Fϕ (Average) 1.43× 10−2 1.35× 10−2

Optimal value of Fϕ

Average 3.9× 10−3 3.63× 10−3

Minimum 3.33× 10−3 3.31× 10−3

Maximum 3.93× 10−3 3.9× 10−3

< 3.9× 10−3 9 10
Number of iterations (Average) 87 98

Number of evaluations of Fϕ (Average) 91 103

Table 5.3: Comparison of the results over 10 runs of different random initializations for the opti-
mization program.

Figure 5.3: The best result returned by BFGS from all the previous runs, using an initial configu-
ration obtained from random angles.
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Chapter 6

Conclusion

In this project we proposed a new approach for the FWI to improve the wavenumber coverage of its
gradient. To this end we expressed the optimal design of the acquisition layout as a minimization
problem using the angular expression of the wavenumbers and we formalized it as an instance of
stable CVT. Where Lloyd’s method proved inadequate, results from Liu et al. made it possible to
solve the problem using Newton-based methods.

The implementation in Python and the various tests conducted on a simple instance led us
to a first glimpse on what constitutes an optimal positioning of the sources and receivers on the
surface. So far the best acquisition layouts found by the method have been obtained using random
initial configurations and seem chaotic, with no clear optimal pattern emerging.

For this reason a thorougher exploratrion of the minimizers of the energy function Fϕ should
be conducted in the aim of infering an optimal pattern that would yield optimal or at least good
results for any instance of the homogeneous problem, no matter the number of the acquisition
devices.

To demonstrate the usefulness of the approach the FWI algorithm should be tested using an
optimized acquisition and compare the result to using a more conventional acquisition.

The model considered in this project being simplistic it is far from reflecting reality and as such
the approach should be extended to more complex models:

1. Take into account the topography of the terrain in the acquisition range, which implies finding
a formula to get the positions of the sources and receivers from the angles ϕs and ϕr when
the surface is not flat.

2. Explore models with non-homogeneous mediums: for instance 1D models where the velocity
depends on the depth z of the subsurface or a more general case where the incident and
adjoint vectors ps and pr are obtained through the resolution of an eikonal equation. In the
former case a formula linking the angles and the positions should be found and in the latter
we need to incorporate or implement a numerical method to solve the eikonal equation.

3. Consider a noncentered target point in the acquisition range or even several target points at
the same time, in this case we need a redifinition of the energy function Fϕ.

4. Extend the approach to 3D models. Here the question of the computation cost should be
addressed and the performence of the implementation will be central because of the leap in
complexity from the 2D case to the 3D one. It might prove useful to move from Python to
more low-level programming languages like C++ or Fortran.
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Appendix A

Optimization

Two fundamental strategies exist for solving unconstrained optimization problems of smooth func-
tion: line search and trust region [10]. A linesearch algorithm is an iterative method where the
next iterate mk+1 is chosen from the previous one following a descent direction ∆m and steplength
αk:

mk+1 = mk + αk∆m. (A.1)

At each iteration new descent direction and steplenght need to be chosen. Provided a sufficiently
small steplength, any direction ∆mk that makes an angle inferior to π

2 with the opposite of the
gradient

− ∇f(mk)∆mk

‖∇f(mk)‖‖∆mk‖
< 0 (A.2)

is guaranteed to produce a decrease in the cost function. Different choices of the descent di-
rection exist, the most used ones are the steepest descent which takes the opposite of the gradient
∆mk = −∇f(mk) at each iteration and the Newton method which fixes ∆mk = −H(mk)

−1∇f(mk)
where H(mk)

−1 designates the inverse of the Hessian of f , provided f is smooth enough.
Finding the best steplength αk amounts to solving the optimization problem

min
α>0

f(mk + αk∆mk) (A.3)

at each iteration, which besides being unpractical is sometimes unnecessary [10]. Instead of
taking the best steplenght we settle for a “good” steplength; two sets of criteria exist to assess the
suitability of the steplength: the Wolfe conditions and the Goldstein conditions.
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Appendix B

Adjoint state method

Let us rewrite the misfit function in (2.3) as a sum

f(m) =

Ns∑
s=1

fs(m) =
1

2

Ns∑
s=1

Nr∑
r=1

T∫
0

|dcal,s(xr, t)− dobs,s(xr, t)|2dt ,

so we can express the gradient ∇f(m) as a sum of the gradients of fs(m)

∇f(m) =

Ns∑
s=1

∇fs(m). (B.1)

Let us find the expression of ∇fs for a fixed index s. Consider us and dcal,s as independant
variables, taking the Lagrangian of fs

L(m,us, dcal,s, λs, µs) = fs(m) +

T∫
0

∫
Ω

[A(m)us − φs] (x, t) · λs(x, t)dxdt

+

Nr∑
r=1

T∫
0

[dcal,s −R[us]] (xr, t) · µs(xr, t)dt ,

we find from the expression of its gradient conditions on λs and µs [9, p. 81] for which ∇fs
has the form

∇fs(m)1 =

T∫
0

∂A(m)

∂m
u(x, t) · λs(x, t)dt. (B.2)

Namely, equation B.2 holds for Lagrangian multipliers λs, µs that satisfy:{
AT (m)λs = RTµs

µs = dobs − dcal
.

Let’s remark that µs is the opposite of the residual dcal,s − dobs,s and λs is the solution of the
adjoint2 wave equation:

AT (m)λs = RT (dobs,s − dcal,s) . (B.3)

From the result (B.2) we deduce that the gradient ∇fs can be seen as the zero-lag time corre-
lation between the incident and adjoint wavefields us and λs.

1m is depends on x so fs can also be expressed as a function of x
2The name adjoint state method derives from the fact that the conjugate transpose of a matrix is also called the

adjoint matrix; equation B.2 is called the adjoint equation and λs is called the adjoint state vector [1, p. 2]
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